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High-order time-stable boundary operators for perfectly electrically conducting
(PEC) surfaces are presented for a 3 × 3 hyperbolic system representing electro-
magnetic fields T E to z. First a set of operators satisfying the summation-by-parts
property are presented for a 2 × 2 hyperbolic system representing one-dimensional
electromagnetic propagation in a PEC cavity. Boundary operators are then developed
for two-dimensional electromagnetic propagation in the xy-plane. This procedure
leads to a time-stable scheme for a 3 × 3 hyperbolic system and concurrently shows
how to eliminate the ambiguity associated with tangential and normal electromag-
netic field components at corners and edges of PEC scatterers when using colocated
computational electromagnetic schemes. A numerical comparison to the popular Yee
scheme is included, and this comparison suggests that the fourth-order (in space and
time) scheme derived herein does effectively compute the Maxwell equations in two
dimensions. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In computational electromagnetics (CEM) simulations, the desire to model electrically
large objects creates a need for high-order algorithms. Furthermore, to achieve pth-order
of spatial accuracy in a computation, it is well-known that the boundary must be closed
with at least a (p − 1)th-order operator [1]. Herein, we refer to boundary operators of accu-
racy ≥3 as high-order boundary operators, and in CEM the implementation of high-order
boundary operators near perfectly electrically conducting (PEC) boundaries is currently
very problematical [2]. When encountering boundaries, most high-order CEM schemes
will use a transition zone of stencils between the high-order interior stencil and the lower
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order boundary stencil. In this investigation, the time stability [1] and spatial stencils for
high-order boundary operators are developed concurrently. To create the time-stable fourth-
order (in space and time) algorithm presented herein, a standard fourth-order Runge–Kutta
(RK4) integrator is used to advance the equations in time, while the spatial stencils and
boundary operator methodology is based on summation-by-parts [3–9] techniques. Paren-
thetically, if u represents a solution vector, then for a continuous u, we let L u represent
∂u/∂x . (We are interested in accurate and stable finite difference approximations of L u.)
For the semidiscretization of the continuous derivative, let H be the norm matrix, let ū,
v̄ be the discrete grid vectors (where, e.g., ū = (u0u1 · · · uN )T ) approximating u and v,
and let Q be the difference matrix. For a closed domain, a difference operator having the
summation-by-parts property must satisfy the norm

(ū, Qū) = 〈ū, H Qū〉
= −1

2
u2

0 + 1

2
u2

N , (1)

where H is the specific norm matrix associated with the difference matrix Q. Evidently
for an operator Q which satisfies the summation-by-parts rule, the norm depends only
on the boundary data. To show stability for hyperbolic first-order systems, restricted full
norms or diagonal norms must be used, and to show stability for systems in several space
dimensions, diagonal norms are required [3, 6, 8]. Herein, we show results with restricted
full norm and diagonal norm operators in one dimension and utilize only a diagonal norm
for the two-dimensional developments.

In this paper a time-stable fully fourth-order explicit treatment of electromagnetic fields
T E to z (T Ez) is derived. In Section 1 the case of one-dimensional electromagnetic (EM)
propagation is cast in the form of a 2 × 2 hyperbolic system. The complete initial bound-
ary value problem (IBVP), written in a form capable of handling both the total field and
scattered field formulations, is presented, and the orthogonal projection method of Olsson
[3, 4] is introduced as a technique for handling the boundary conditions of the field com-
ponents at PEC walls. Various spatial stencils which satisfy a summation-by-parts formula
are shown to effectively track the time development of an EM pulse in a PEC cavity. In
Section 2 the techniques utilized in Section 1 are expanded to include a treatment for cor-
ners in a two-dimensional computational domain. Projection operators are developed and a
fully discrete version of the 3 × 3 hyperbolic system describing T Ez mode propagation is
presented. Numerical comparison to the popular CEM method, the Yee scheme, is provided
in Section 2. In general, many comments specific to the CEM implementation are included,
but an emphasis is placed on presenting the problem of electromagnetic wave propagation
as an important case study for the theories and techniques advocated herein.

2. ONE-DIMENSIONAL EM WAVE PROPAGATION

For one-dimensional propagation in the z-direction, the Maxwell curl equations [10]
reduce to

∂ Ex

∂t
= −c2 ∂ By

∂z
,

∂ By

∂t
= −∂ Ex

∂z
. (2)
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Let

w =
[

Ex

cBy

]
; (3)

then Eq. (2) can then be written as a 2 × 2 hyperbolic system,

wt = A wz, (4)

where

wt = ∂

∂t

[
Ex

cBy

]
, wz = ∂

∂z

[
Ex

cBy

]
, (5)

and

A =
[

0 −c
−c 0

]
. (6)

In CEM the matrix A is commonly called a connectivity matrix.
For notational purposes, let By → B and Ex → E ; then the grid vector for the spatially

discrete system is written as

w̄ = (E0 cB0 E1 cB1 . . . EN cBN )T . (7)

We desire the semidiscrete equation

dw̄

dt
= M̄w̄, (8)

where according to our program M̄ must satisfy the summation-by-parts formula (e.g.,
Eq. (1)). When moving from the continuous representation of the one-dimensional system,
Eq. (4), to the semidiscretization of the system, Eq. (8), it is required that Eq. (6) be modified
such that

Ā =




0 −c 0
−c 0

0 −c
−c 0

. . .

0




. (9)

Let Q be a difference operator approximating ∂/∂z. For reasons outlined in the Introduction,
we restrict our attention in this section to two operators which satisfy the summation-by-
parts formula: the RF4, a restricted full norm operator, and the D4, a diagonal norm operator.
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Specifically, the RF4 operator (for the scalar case) has the form

hQ =




−11
6 3 −3

2
1
3 0 0 0 0 0 0 · · ·

q10 q11 q12 q13 q14 q15 q16 0 0 0
q20 q21 q22 q23 q24 q25 q26 0 0 0
q30 q31 q32 q33 q34 q35 q36 0 0 0
q40 q41 q42 q43 q44 q45 q46 0 0 0

0 0 0 1
12

−2
3 0 2

3
−1
12 0 0

0 0 0 0 1
12

−2
3 0 2

3
−1
12 0

...
. . .

, (10)

where the coefficients qi j are given in an appendix of [6]. The coefficients in Eq. (10)
encompass the transition zone between a third-order windward stencil on the boundary and
a fourth-order central operator in the interior. Furthermore, these coefficients are designed so
that the semidiscretization satisfies a summation-by-parts energy norm [6, 9]. The specific
D4 stencil used herein is the minimum bandwidth fourth-order diagonal norm difference
operator [6], which is shown in Eq. (11) (again for a scalar case):

hQ =




q00 q01 q02 q03 q04 0 0 0 0 0 0 · · ·
q10 0 q12 q13 q14 q15 0 0 0 0 0

q20 q21 0 q23 q24 q25 0 0 0 0 0

q30 q31 q32 0 q34 q35 q36 0 0 0 0

q40 q41 q42 q43 0 q45 q46 q47 0 0 0

0 q51 q52 q53 q54 0 q56 q57 q58 0 0

0 0 0 −1
60

3
20

−3
4 0 3

4
−3
20

1
60 0

0 0 0 0 −1
60

3
20

−3
4 0 3

4
−3
20

1
60

...
. . .

(11)

As was done for the A matrix in Eq. (9), when converting from the scalar case to the discrete
system case, the Q matrix and norm matrix H , say, for the D4 operator, take on the form

hQ̄ =




q00 0 q01 · · ·
0 q00 0
...

. . .

(12)

and

H̄ =




h00 0 0 · · ·
0 h00 0

0 0 h11

...
. . .

. (13)

For the semidiscrete equation, Eq. (8), it was found (using Mathematica [11] on a twenty-cell
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domain) that both an RF4 and a D4 stencil-based scheme give the norm (with M̄ = ĀQ̄)

(w̄, M̄w̄) = 〈w̄, H̄ ĀQ̄w̄〉
= −1

2
w̄2

0 − 1

2
w̄2

1 + 1

2
w̄2

2N−1 + 1

2
w̄2

2N

= −1

2
E2

0 − 1

2
(cB0)

2 + 1

2
E2

N + 1

2
(cBN )2,

which shows that the norm only depends on the boundary data (cf. Eq. (1)).
Following [7, 8], the system in Eq. (4) is now modified to model closely a scattered

field formulation (e.g., for the scattered field formulation we input values for the scattered
tangential electric fields on PEC boundaries, while in a total field formulation we set Etan

on all PEC boundaries to zero). For a PEC cavity with walls at z = 0 and z = 1, the
inhomogeneous IBVP is written as

wt = Awz, 0 ≤ z ≤ 1, t ≥ 0,

w(z, 0) = f (z), 0 ≤ z ≤ 1,
(14)

w(0, t) = g(t), t ≥ 0,

w(1, t) = h(t), t ≥ 0.

For the scattered field formulation, we impose the negative values of the incident tangential
electric fields at PEC boundaries, which, with gT = [gE0 0], corresponds to letting

gE0(t) = −E inc(0, t).

For the discrete system, the boundary condition at z = 0 is couched in terms of a boundary
operator L as

LT w̄ = gE0 , LT = [1 0 · · · 0]. (15)

By construction, the orthogonal projection operator [3, 4, 8] is designed to provide a stable
method of introducing the analytical boundary conditions. Given the boundary operator L ,
the projection operator P for restricted full or diagonal norms is given as

P = I − L(LT L)−1 LT . (16)

This projection operator will modify the semidiscrete equation, Eq. (8), such that for ho-
mogeneous boundary conditions (i.e., g = h = 0 in Eq. (14)), we can write

dw̄

dt
= P M̄w̄. (17)

For the semidiscrete scattered field formulation of Eq. (14), let

g̃ =




−E inc(0, t)

0
...

0

−E inc(1, t)
0




, (18)
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and

LT =
[

1 0 · · · 0 0 0
0 0 · · · 0 1 0

]
. (19)

The projection operator is obtained by using Eq. (19) in Eq. (16), and the theory gives the
final version of the semidiscretization of the IBVP in Eq. (14) as

w̄t = P M̄w̄ + (I − P)g̃t . (20)

The solution vector, w̄, is obtained by integrating Eq. (20) at all points using the RK4 inte-
grator. Note that in Eq. (20) the boundary condition is imposed in terms of its time derivative.
If the time derivative of the analytical boundary condition is unavailable, we can use an
auxiliary variable as shown in [7] to couch the problem solely in terms of g̃, rather than g̃t .

2.1. One-Dimensional PEC Cavity

In this section, we discuss a measure of the spatial operator accuracy, and also show time
developments of EM pulses in a PEC cavity. These one-dimensional tests utilize the RK4
integrator in conjunction with the RF4 and D4 difference stencils. The PEC cavity tests
model Eq. (2); thus propagation is in the ±z-direction.

To validate experimentally the order of accuracy of the RF4 and D4 operators, the fol-
lowing test is considered. Let u = sin(kx) with k = 2π . Let ε be the L2 norm of the error
between the computed value and the exact value, and let h be the grid spacing. In accordance
with Taylor theory, log(ε)/ log(h) is proportional to the order of the scheme, for a reason-
ably small h. Such is the case for both the RF4 and D4 operators, as borne out in Fig. 1.
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FIG. 1. Grid refinement for the RF4, D4, and CC4 spatial operators.
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The CC4 stencil, also included in Fig. 1, is a high-order spatially implicit stencil. Details of
the CC4–RK4 scheme are discussed in [12]. The error is calculated over the whole domain
and includes the boundaries.

In all time-domain simulations, the fields are modeled using a Gaussian pulse of the
form e−a2τ 2

, where a controls the pulse width and τ = (vp(t − t0) + (x − x0)). The pulse
bandwidth is defined to be from zero to ωm (or from 0 to fm , where ωm = 2π fm), where ωm

is the angular frequency for which the frequency-domain amplitude of the pulse is one-
tenth of its peak value. The correlation between a and ωm is deduced from Fourier analysis:
a = ωm/(3.035c). Furthermore, let λmin = 2π/kmax with kmax = ωm/c. We choose to set
h using λmin/Npts , where Npts is the number of points per wavelength associated with ωm .
Unless otherwise noted vp = 1 m/s, fm = 2 GHz, and c = 3E8 m/s. The time step in one
dimension is related to the special step size as dt = (CFL h)/vp.

One-dimensional tests of these high-order schemes using the RK4 integrator in conjunc-
tion with the RF4 and D4 difference stencils in the PEC cavity were performed in both
the total field and the scattered field formulations, with and without a dielectric slab in the
cavity. For the D4 examples we use the scattered field formulation, with an EM pulse as
input. Therefore, for the D4 runs, the governing equation is given by Eq. (20), with f (z)
in Eq. (14) set to zero over the entire domain. Figure 2 shows the time development for
the pulse over a long range of time steps, with a CFL = 1. Figure 3 shows a late time
run after the pulse has traveled 100,000 cells, using a CFL = 1.78. The RF4 tests used the
total field formulation. For these total field tests, an EM pulse is setup at t = 0 using f (z)
and setting g = h = 0 in Eq. (14), effectively giving Eq. (14) as the governing equation.
Figure 4 shows the time development for the pulse over a long range of time steps, using a
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FIG. 2. Time development for the D4–RK4 scheme, CFL = 1.
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FIG. 3. Late time data for the D4–RK4 scheme, CFL = 1.78.
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FIG. 4. Time development for the RF4–RK4 scheme, CFL = 1.
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FIG. 5. Late time data for the RF4–RK4 scheme, CFL = 2.015.

CFL = 1. Figure 5 shows a late time run after the pulse has traveled 100,000 cells, using a
CFL = 2.015.

3. TWO-DIMENSIONAL EM WAVE PROPAGATION

In order to extend the techniques for one-dimensional propagation to the case of two-
dimensional propagation, we are required to reformulate the projection operator in terms
of the characteristic variables of the system. Here we follow [3] in the development of a
projection operator that handles corners for two-dimensional PEC scatterers.

For T Ez mode propagation in the xy-plane, the Maxwell curl equations reduce [10] to

∂ Ex

∂t
= c2 ∂ Bz

∂y
,

∂ Ey

∂t
= −c2 ∂ Bz

∂x
, (21)

∂ Bz

∂t
=

(
∂ Ex

∂y
− ∂ Ey

∂x

)
.

The solution vector, u, is given as

u =




Ex

Ey

cBz


 . (22)
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Equation (21) can now be written as a 3 × 3 hyperbolic system,

ut = Px ux + Py uy, (23)

where

ut = ∂

∂t




Ex

Ey

cBz


 , ux = ∂

∂x




Ex

Ey

cBz


 , uy = ∂

∂y




Ex

Ey

cBz


 , (24)

and

Px =

 0 0 0

0 0 −c
0 −c 0


 , Py =


 0 0 c

0 0 0
c 0 0


 . (25)

For notational purposes let Ex → E x and Ey → E y . The grid vector u is written [4] as
uT = (uT

0 . . . uT
N ) with uT

j = (uT
0 j . . . uT

M j ) such that ui j ∈ Rd , for a domain with limits
of i ∈ 0, . . . , M and j ∈ 0, . . . , N . For this two-dimensional hyperbolic system, d = 3, and
the grid vector for u has d × (M + 1) × (N + 1) elements and is written as

ūT = (
E x

00 E y
00 cB00 E x

10 . . . cB(M−1)N E x
M N E y

M N cBM N
)
. (26)

Here in Eq. (26), we have ūT
0 = (E x

00 E y
00 . . . cBM0), where ūT

00 = (E x
00 E y

00 cB00) ∈ R3.
That is, ū00 is a three-element column vector.

For this T Ez mode, we find that on a boundary surface that lies along a coordinate axis,
one component of the E-field will be normal to the surface, while the other component will
be tangential. The physical boundary condition on the PEC surface [10] for the electric
field dictates that the normal component be proportional to the surface charge, while the
total (i.e., incident plus scattered) tangential component should vanish. Furthermore, for the
fully discrete case, we find that on each boundary surface that lies along a coordinate axis,
the derivatives normal to the surface maintain a one-dimensional character [3, 13], while
the derivatives tangential to the surface will be treated in a special manner. For derivatives
tangential to a surface, we treat the surface as a closed one-dimensional domain, requiring
boundary closure at each extremum of the surface. When two separate planar surfaces meet,
a corner node is established at the intersection point. While the interior of each planar surface
is handled as previously described, the time evolution of the field components at the corner
node are given special treatment. For the corners of a PEC scatterer we require a method to
determine which field components are tangential, and which components are normal at said
corner. For the system shown in Eq. (23), in order to formulate the governing equations for
the dependent variable at a corner, we need to specify the relationship between the ingoing
and outgoing characteristics at the corner.

To establish this relationship (between the ingoing and outgoing characteristics) we
present the following derivation. Let n = (nx , ny) be the outward unit normal to the surface
(which is to be constructed). This normal is defined such that h =

√
h2

x + h2
y and

nx = −hy

h
, ny = −hx

h
. (27)
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Note that a definitive normal can be established for all points on the boundary. At each point
on a boundary a matrix A is formed,

A = nx Px + ny Py, (28)

where Px and Py are given in Eq. (25). The matrix A can be diagonalized anywhere on the
surface, giving (with Q representing the modal matrix [14])

� = QT AQ, (29)

whose diagonal elements are the eigenvalues of A. As with all similarity transformations
[14], the matrix Q is built up with the eigenvectors of A.

After the construction of A and the calculation of the modal matrix Q, the following ob-
servations are in order. The characteristic variables on the boundary are given by ϕ = QT u.
We can split the characteristics (i.e., the elements of ϕ) into separate vectors representing
the ingoing and outgoing characteristics. Specifically, let ϕI be the ingoing characteristics
and let ϕII represent the outgoing characteristic variables. For a solution vector u ∈ Rd , we
require that ϕI ∈ Rd1 and ϕII ∈ Rd2 such that d1 + d2 = d. For example, with d = 3, we
may have d1 = 1 and d2 = 2. We desire to build a relationship between ϕI and ϕI I . This
relationship (between ϕI and ϕII) is written as

ϕI = S ϕI I , (30)

which yields values for the (newly defined) matrix S. Furthermore, after we define QI and
QII such that ϕI = QT

I u and ϕII = QT
II u, then a boundary operator L can be constructed.

LT u = 0 (31)

such that

LT = QT
I − SQT

II, (32)

where the S matrix is governed by Eq. (30). The boundary operator L can in many cases be
written down by inspection of what is dictated by the result in Eq. (31) for any one specific
boundary condition.

As an example of the methodology, we use the theory to construct a boundary operator
at a corner. For a domain with boundaries along the x-axis and y-axis, the origin, (0, 0),
serves as a corner to the domain. At the origin, we use Eq. (32) to calculate the boundary
operator L . We denote the connectivity matrix at this corner as A00. The matrix A00, at a
corner with a normal by nx = ny = −1/

√
2, is calculated using Eq. (28):

A00 = 1√
2


 0 0 −c

0 0 c
−c c 0


 . (33)

During the construction of the eigenvalue matrix at this corner, �00 = diag{∓c, 0} =
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QT A00 Q, the eigenvector matrix Q is found to be

Q = 1√
2




1/
√

2 −1/
√

2 1

−1/
√

2 1/
√

2 1

1 1 0


 . (34)

Accordingly, the characteristic variables are given as ϕ = QT u, yielding

ϕ = 1√
2




Ex/
√

2 − Ey/
√

2 + cBz

−Ex/
√

2 + Ey/
√

2 + cBz

Ex + Ey


 . (35)

Attention is now focused on the ingoing and outgoing characteristics for T Ez modes. For
this particular PEC corner, given Etan = 0, we require that Ex = Ey , which yields the
following characteristics:

ϕI = 1√
2

[cBz] (36)

and

ϕI I = 1√
2

[
cBz

Ex + Ey

]
. (37)

We use Eq. (36) and Eq. (37) in Eq. (30) to obtain S = [1 0] at this corner. From Eq. (32),
it follows that

LT = [−1 1 0], (38)

which specifies that Ex = Ey at this corner (i.e., LT u = 0). We now use Eq. (38) in Eq. (16)
to obtain the projection operator:

P =




1/2 1/2 0

1/2 1/2 0

0 0 1


 . (39)

For the T Ez scattered field formulation we modify Eq. (23) as done in Eq. (20) [3].

ut = PPx ux + PPy uy + (I − P)g̃t , (40)

where g̃ incorporates the boundary condition as shown in Eq. (18), and g̃t is the time
derivative of g̃. We expand Eq. (40) for the T Ez case to obtain the linear system




∂ Ex

∂t

∂ Ey

∂t

c
∂ Bz

∂t




=




−c2

2

∂ Bz

∂x

−c2

2

∂ Bz

∂x

−c
∂ Ey

∂x




+




c2

2

∂ Bz

∂y

c2

2

∂ Bz

∂y

c
∂ Ex

∂y




+




−1

2

∂

∂t

(
E inc

x − E inc
y

)
−1

2

∂

∂t

(
E inc

y − E inc
x

)
0


 , (41)



302 J. F. NYSTROM

y

x

FIG. 6. Line source with outward normal at each node on the boundary.

which is valid only at a specific corner of a PEC scatterer with an inward normal (to the
surface) given by n = (±1/

√
2, ±1/

√
2).

As seen in Fig. 6, for a simple shape like a line source, a square, or rectangular cylinder,
there need be only two distinct types of corner nodes. To make clear what the linear system in
Eq. (41) dictates, consider the following. When we implement a semidiscrete approximation
of Eq. (41), i.e., when, say, the D4 operator is used to approximate the continuous partial
derivative ∂/∂x , we find that the time evolution of Ex and Ey at this corner no longer
depends solely on a single spatial derivative of Bz (as shown in Eq. (21)). Rather, when
using Eq. (41) to evolve the field components at this corner, the cells used to update Ex

and Ey are located at the corner and off the plate for convex corners, forming a stencil
footprint in the shape of an “L,” whose corner is located at the boundary cell. That is, Ex

and Ey each depend on spatial derivatives in both the x- and y-directions. This system
will maintain Etan = 0 (as a matter of course in the total field formulation, and also in the
scattered field formulation when the incident field is added in). Furthermore, Enormal to the
boundary evolves according to the change of Bz in both the x- and y-directions.

It is important to realize at this point that there is no longer any question which vector
field components are normal and which are tangential at a corner of a PEC scatterer (or any
other type of object). This is a result of effectively chamfering the corner, and establishing a
definite normal for the object at the corner. Parenthetically, it should be easy to show that a
surface normal of arbitrary orientation can be included in a computational domain using the
techniques described herein. As an example we derive the linear system describing the time
evolution of the fields at a PEC corner whose surface tangent makes a 60◦ angle with the x-
axis. For this surface, the surface normal is given as n = (

√
3/2, 1/2), and it then follows that

A = 1

2




0 0 c

0 0 −√
3c

c −√
3c 0


 .

At this location, Etan = 0 dictates that Ex = √
3Ey , which yields the characteristics

ϕI = 1√
2

[cBz]
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and

ϕI I = 1√
2

[
2
√

2Ey

cBz

]
.

Formulating ϕI = SϕII yields S = [0 1], and it follows that

LT = QT
I − SQT

I I = 1√
2

[1 −
√

3 0].

Upon calculation of the projection operator we obtain the linear system describing the time
evolution of the field components at this specific type of corner (shown here in the total-field
formulation):




∂ Ex

∂t

∂ Ey

∂t

c
∂ Bz

∂t




=




−
√

3 c
2

4

∂ Bz

∂x

−c2

4

∂ Bz

∂x

−c
∂ Ey

∂x




+




3 c2

4

∂ Bz

∂y
√

3 c
2

4

∂ Bz

∂y

c
∂ Ex

∂y




.

3.1. Two-Dimensional Test Cases

To test the efficacy of the D4–RK4 scheme, a geometry involving a 2λ square cylinder
with a T Ez pulse obliquely incident at an angle of φ = 45◦ (with respect to the x-axis) is
chosen. To properly handle the domain truncation, the GT-PML [15] is used with all D4–RK4
implementations. For the simulations described in this section a time derivative of a Gaussian
pulse with parameters as described in Section 1.1 is used to model the incident fields. The
time step in two dimensions is related to the special step size as dt = (CFL h)/(

√
2vp).

All simulations are run with a CFL = √
2/2 (i.e., the pulse propagates one cell along a

Cartesian axis every two time steps).
Figure 7 shows the surface current data for both the D4–RK4 at 40 points per wavelength

(ppw) and a Yee [16, 17] scheme of the same configuration at 80 ppw. The current data is
obtained using a running Fourier transform on the input signal and total magnetic field at the
surface of the scatterer. Figure 8 shows the phase of the surface current for both schemes.
The classic Yee scheme has been used extensively to model electromagnetic scattering
objects, and to track surface currents for PEC objects [18]. The convergence of the two
separate techniques toward the same answer provides verification for results obtained from
the D4–RK4 scheme.

It should be noted that the comparisons (between the D4–RK4 and Yee scheme) con-
tained herein suffice only to show the efficacy of the D4–RK4 scheme, and that no claims
concerning the efficiency of the D4–RK4 over the Yee scheme are being made. Furthermore,
since the Yee scheme uses an uncolocated grid [17], the current data (which utilizes Hz in
this case) for the Yee calculation is actually taken at locations at least half a cell length off
the scatterer (and a little more at the corners). For this reason, a higher number of ppw is
used for the Yee scheme in order to move the actual geometries, used in the comparison,
closer together.
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FIG. 7. Yee and D4 calculated surface currents for an obliquely incident T Ez wave on a 2λ square cylinder.
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FIG. 8. Phase for current on 2λ square cylinder.
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4. CONCLUSIONS

In this paper we studied the implementation of high-order boundary schemes for various
hyperbolic system cases associated with the Maxwell equations in one dimension and two
dimensions. Special attention was given to IBVPs which included PEC surfaces in the
computational domain. A major underlying theme has been the importance of building
time stability into the time-domain calculations, and to this end, we used derivative stencils
which satisfy the summation-by-parts property to approximate the spatial derivatives, and
the orthogonal projection method to introduce the boundary conditions.

Moreover, in the study of electromagnetics, it is well understood that the Maxwell equa-
tions, combined with the constitutive relations, can completely describe all macroscopic
electromagnetic phenomena. The only items that separate one electromagnetic situation
from another are the values of the electromagnetic parameters on/at the boundaries of the
problem. Therefore it behooves us to know definitively which electromagnetic field com-
ponents are tangential, and which components are normal at the boundary surfaces within
our CEM simulations. In other words, without a definitive normal at every exterior surface
point of objects within a colocated domain, the problem being computed is very ill posed. It
has been found that for colocated Cartesian-based CEM schemes, if we do not make special
considerations for what happens at edges and corners of scatterers in two or three dimen-
sions, we run into a genuine surface-normal ambiguity problem. In this paper we have
both identified and resolved the surface-normal ambiguity problem for two-dimensional
geometries. (The discussion of colocated Cartesian-based three-dimensional geometries is
the topic of a future paper.)

In summary, the primary contributions of this paper are the following.

1. It shows how to construct a suite of RK4-based high-order time-stable solvers in one
dimension. The methodology employed shows that any restricted full norm or diagonal
norm operator, which satisfies the summation-by-parts property, can effectively handle
one-dimensional propagation in a time-stable manner.

2. It identifies and solves an outstanding problem inherent in all Cartesian-based colo-
cated CEM methods. The author labeled this a surface-normal ambiguity problem. Utilizing
the orthogonal projection method, which effectively chamfers any corners, we can now pro-
vide a definitive surface normal at all locations on the exterior surface of a scatterer.

3. It derives a method for producing high-order time-stable two-dimensional solvers for
the Maxwell equations on a colocated grid. These two-dimensional solvers provide for a
definitive surface normal at every exterior node of a scatterer, while also correctly evolving
in time—in both a scattered field and a total field formulation—the field components at all
locations in time-stable manner.

These results, enumerated above, have been supported by simulations and mathematical
analysis as appropriate.
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